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The study aims to investigate the gaze patterns of individuals with Homonymous Hemianopia, a visual defect
caused by damage to the occipital lobe and visual cortex, resulting in loss of visual information from the con-
tralateral visual field. By utilizing object detection and gaze estimation techniques, the study aims to understand
the gaze patterns of such patients in spatio-temporally changing environments. Our data acquisition system
consists of monitoring eye gaze in dynamic, outdoor settings by incorporating a head-mounted eye tracker and a
pair of inertial measurement units (IMUs) to determine gaze orientation in relation to the direction of movement
during outdoor walks. The IMUs, situated on the head and torso, calculate the head’s relative position to the body,
thereby minimizing the impact of outside influences on each sensor. Our system was put to the test in bustling city
settings and was successful in evaluating gaze behavior in outdoor environments, even accounting for drift during
extended gaze recording sessions of up to 18 minutes. The acquired data is analyzed over spatio-temporal objects
in the Field of view (FoV) and the eye-gaze patterns pertaining to the nature of object gazed is quantized to provide
behavioral insight. Finally, our method proposes a modified Saliency Attentive Model to analyze the deviation of
Eye Gaze in patients with Homonymous Hemianopia compared to standard gaze patterns using Spatial Fixation
Priority in Saliency Maps through Persistent Homology. © 2023 Optica Publishing Group
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1. INTRODUCTION

Examining information in temporal gaze patterns can reveal insights
into gaze behaviour essential for studying patterns in visual defect
conditions. These patterns provide insight into how a gaze changes
it’s spatial location and orientation under a landscape and the reason
why a specific gaze is focused on a particular set of objects for a larger
period of time. The notion here is that it changes widely in patients
concerning different visual defects and specifically examining the
patterns exhibited in different visual defects may potentially be of
clinical relevance for diagnosis and prognosis. Specifically exam-
ining patterns in patients with Homonymous Hemianopia allows
extrapolating temporal trends to other visual defects as well. Quan-
titative analysis of these patterns are central to drawing reasonable
inferences in behavioral patterns associated with each visual defect.
Such an autonomous and non-invasive approach for identification
of behavioral patterns provides a low-cost alternative in domains
where MRI is not readily accessible or required.

Homonymous Hemianopia is a visual defect associated with the
damage of the occipital lobe and the visual cortex leading to loss
in visual information from the contralateral visual field. Previous
studies focusing on oculography focused on manually observing
quantitative patterns using approximated methods to classify them -
Meienberg et al. [1]. These studies observed patients to consciously

or unconsciously exhibit specific common strategies to spatially
locate and fixate objects observed through gaze patterns. This helped
draw assumptions that locating and fixating strategies are specific
to visual defects and can be used to identify the defect. However,
we still observe limitations in oculographic methods to manually
classify patterns in longer temporal-trends and hence we propose
this Research to employ gaze estimation for localizing quantifiable
patterns temporally.

Comparing strategies previously used for diagnosis and prognosis
of visual defects is significantly distinctive specifying the evaluation
strategies for gaze checks which commonly rely on rapid vibration
or change in object around a fixation point throughout the focal
view to identify signs of visual defects, in this case Homonymous
Hemianopia. Evaluation experiments relying on acquisition of vi-
sual stimuli specific to tracking an object around the fixation point
does not give insight into behavioural analysis of the same patient
under contemporary real world conditions. The following research
develops a data acquisition system tracking gazes as well as relative
head angles and spatial movements for a Homonymous Hemianopic
patient walking in locations namely classified as empty street walk-
ing which involves gaze directional towards objects of other classes
than ’person’ evaluating the nature of objects and trends in gaze over
specific object characteristics, crosswalks or lane-crossing mainly to
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evaluate simultaneous attention distribution over vehicles, people
and crosswalk over the focal view, under stationary conditions assess-
ing trends in tendency to observe objects under a certain quadrant
of the focal view (characteristic distinctive to Homonymous Heman-
iopia) and other similar instances.

The task of calculating gaze extends to the standard gaze esti-
mation method under fixation point experiments where the head
position is fixed as a function of time. Under simulated real-world
conditions with moving head position in the coordinate space, gaze
estimation is achieved through eye gaze estimation relative to the
head spatial location and angle, and calculation of head coordinates
in space relative to the ground frame. This creates an ensemble of
both these calculation algorithms working simultaneously to achieve
accurate gaze estimation for objects irrespective of the orientation of
head in space. The calculation of head location is based on the infor-
mation retrieved through IMU sensors positioned on the Homony-
mous Hemaniopic patient.

Temporally, the gaze is tracked and estimated for the person
in-motion using a camera positioned to capture the gaze; simulta-
neously another camera positioned horizontally outwards captures
the focal view of the landscape to correspond to the objects being
observed by the gaze. Concerning studies involving mobile sub-
jects with head and gaze position varying with time, most research
focused solely on tracking gaze in-head orientation without consid-
ering the impact of head orientation over eye-gaze results. (Fotios,
Uttley et al.[2], Li, Munn et al.[3]). Since head-orientation wasn’t
taken into account, an accurate picture of what the eye-gaze is di-
rected towards could not be made. Relative analysis to some-extent
may reveal important results; however an absolute estimation of spa-
tial coordinates helps decipher accurate results with respect to the
ground frame. Recent improvements are observed in tracking by esti-
mating spatial positions of head movement with respect to confined
environments using walking simulators of head-in-space motion
capture systems (Barabas, Goldstein et al., [3]; Bowers, Ananyev et
al., [4]; Cesqui, de Langenberg et al., [5])

Considering the case of Homonymous Hemianopia can be ob-
served as uni-hemispherical peripheral visual field loss, quantifi-
cation of temporal patterns in data through gaze tracking provides
important behavioural insights which possibly might not be accom-
plished through eye tracking alone. According to Luo et al. [6], pa-
tients with tunnel vision observed saccadic eye-movements large
enough to match those of normal vision person under specific con-
ditions while walking outdoors. This makes it hard to distinguish
between specific cases in people with visual defects compared to
those with normal vision under different environments and using
only in-head eye-movements. Extrapolating such data might not
yield accurate results and might also contradict findings of previous
experiments. Contrary to the frequent methods published to solely
identify Homonymous Hemianopia, this paper provides a deeper
insight in the behavioural and temporal gaze patterns observed for
the patients under various outdoor conditions.

2. DATA ACQUISITION

Our portable gaze tracking system includes a commercial eye track-
ing system from Positive Science (Positive Science, New York City,
NY; 2013) and two commercial IMUs from VectorNav (VectorNav,
Dallas, TX). The components are integrated into a lightweight back-
pack for comfort during wear. The head tracking system is capable
of measuring the yaw, pitch, and roll of the head relative to the body
trunk, but for this research, we will be focusing on yaw measurement
as it is essential for street walking and road crossing. The system is
adaptable to measure pitch movements as well. The gaze tracker

records two videos, one of the eye and the other of the forward scene,
and records the output from the motion sensors. All data streams
are logged at a frequency of 30 Hz.

A. Eye Tracking System
The Positive Science eye tracker consists of a camera that tracks one
of the eyes, along with a scene camera that captures a 608 field of
view, both mounted on one side of a spectacle frame. This design
allows for prescription lenses to be fitted in front of both eyes and for
optical devices, such as peripheral prism glasses for Homonymous
Hemianopia, to be placed on the other eye that is not being tracked.
The mobile eye and head tracking system features two data logging
computers mounted on a backpack and a front view of the system
showcases the eye tracking headgear, which includes the eye and
scene cameras, as well as the body and head tracking sensors. The
eye tracking system undergoes a 13-point calibration at the begin-
ning and end of each recording session to detect any movement of
the headgear during the walk. The calibration is performed at a 4
meter distance and the eye tracker is verified using fixation targets
on a whiteboard. If the calibrations match, the same one can be used
throughout the sequence, but if they don’t, the sequence is split into
two parts, with each part using a different calibration. Convenient
locations are identified along the walking route for brief calibration
checks and the subject is asked to fixate on specific points while
audio is recorded to assist with identifying the calibration points dur-
ing post-processing. If the eye tracker accurately locates the point
of regard, the pre-walk calibration is considered valid. If not, the
calibration performed at the end is verified and the best calibration
is applied to the corresponding segment. If neither calibration is
found to be valid, the segments are discarded from analysis.

B. Head Tracking System
We use Inertial Measurement Units (IMUs) for head tracking instead
of video-based cameras because they are simpler to process. IMUs
consist of accelerometers, gyroscopes, magnetometers, and a mi-
crocontroller. Gyroscopes are known for drifting over time, but the
drift is corrected with the help of magnetometers and Kalman filters.
IMUs can perform well in most environments but can be affected by
electromagnetic and metallic objects in busy downtown areas. To
address this issue, we employ various strategies including using a
pair of matched IMUs to cancel out external electromagnetic inter-
ference.

We evaluated various commercial IMUs and selected the VN-100
model from VectorNav based on its accuracy and internal processing
capabilities. Although our results were based on this specific IMU,
the proposed method can be used with other commercial IMUs.
One sensor is attached to a hat visor worn by the subject while the
other is attached to the waist, acting as a reference. Both sensors
are connected to a laptop in a backpack. Using two sensors, with
one on the waist, we can measure horizontal head rotations relative
to the body by calculating the difference between the two sensors.
It’s important to use sensors that are as similar as possible to reduce
noise and benefit from the differential signal. External interference
affecting both sensors will be canceled out when computing the
differential signal, resulting in a cleaner signal of head orientation
relative to the body.

Even though the differential signal is used, there may still be drift
between the outputs of both sensors due to uncorrelated noise. The
drift could be caused by uncontrolled external factors that affect each
sensor differently or by internal noise that is unique to each sensor.
To minimize the errors caused by uncorrelated noise, our experimen-
tal protocol includes several reset operations at preset checkpoints
along the outdoor route. These checkpoints are positioned based
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Fig. 1. Designed methodology of the proposed research. Here, modules [a], [b], [c] denotes a feature detection module, thresholding mod-
ule and realtime pupil and optional corneal reflection tracking module which form an ensemble network for eye-gaze extraction. A Faster
RCNN Inception V2 Object Detection framework is used for detecting objects for identifying salient gazed objects.

Fig. 2. The system for tracking eye and head movements while
mobile is shown in the back and front views. The back view dis-
plays the two data logging computers on the backpack that record
eye and head movements, and the eye movement logger records
video from the scene camera. The front view shows the eye tracker
headgear, which contains the eye tracking and scene cameras, and
the body and head tracking sensors.

on the distance walked and are best set after turning points on the
walking path. At the checkpoints, the subject is instructed to stop
briefly and look forward, and a heading reset command is sent to
the logging computer to align the orientations of the two sensors
and minimize any potential drift. The eye tracker calibration, which
was previously described, is also quickly verified at this time. We
have created custom software using the IMU software development
kit to log the inertial data. This software handles basic sensor diag-
nostics, parameter setting, and user interaction. The software runs
on a lightweight ASUS Eee PC notebook with an Intel Atom N455
processor, which is mounted on the backpack (as shown in Figure
1a). The software outputs a text file that includes the timestamp in
seconds, orientation in degrees, acceleration in meters per second
squared, and angular velocity in degrees per second for both sensors.
The software also keeps track of the reset points and can record a key
code from the experimenter to identify significant events.

3. POST PROCESSING

4. METHOD

One of our main aims in this research is to to analyse and recog-
nize the qualitative nature of the objects guided by a gaze. Here, we
make use of Object detection to detect and classify objects based
on their extrinsic properties and use these qualitative temporal pat-
terns to identify Homonymous Hemianopic bio-markers. Object
detection has been at the epicentre for different computer vision
applications. Over the years, Object detection and classification
frameworks have been widely used over a spectrum of applications
from Autonomous Driving Assistance Systems (ADAS), Healthcare,
Robotics etc. and contextually, the mode of deployment of the devel-
oped framework varies as well which can be observed in the form of
two subsequent algorithms performing similar task extracting com-
pletely different patterns of data. Essentially, this research focuses on
an Object detection model with a notion of saliency to understand
gaze-aware relative importance of different classes and its demo-
graphics. The post-processing of our results focuses on identifying
relative saliency of detected object classes distinguishing between
observant behavioural patterns in Homonymous Hemianopic pa-
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tients.
We start by comparing different Object detection models suited

for our research environment and going with the one which yields
the most accurate detections specific to the objects in our curated
dataset. The detected objects are classified as whether they are gazed
or not using three different levels of classification algorithms namely
a Euclidean thresholding method through the centroid of the detect-
ing bounding boxes and the other two being geometrical approaches
calculating whether a gaze fixation at a spatial frame exists inside
the bounding box temporally and the last one being a combination
of the previous two; using a Euclidean thresholding method for the
foot of perpendicular from the spatial gaze coordinates onto each
localised segment of the bounding box using the distance for the per-
pendicular as the threshold for classification. This will be elaborated
upon later.

Initially in this research, we gauge a comparison between 6 differ-
ent Object detection frameworks each trained on the COCO (Com-
mon objects in context) dataset namely YOLO v4 Darknet (You Only
Look Once), Faster R-CNN Resnet 50 COCO, SSD Mobilenet V1
COCO- (quantized), SSDlite Mobilenet V2 COCO, SSD Incpetion
V2 COCO, Faster R-CNN Inception V2 COCO. It must be noted here
that we gauge the frameworks such that a trade-off for speed or pro-
cessing time for accuracy is preferred in each case. This is because
the research focuses on evaluating behavioural patterns and this
does not require a real-time on-device processing out-of-the-box
and hence post-processing accurate methods (even though compu-
tationally heavy) are preferred. Additionally, even though we try to
minimise false negatives as well as false positives in our framework,
there is a general preference towards having no-detections in any
given frame rather than false-positives since those might yield ar-
bitrary conclusions which might drive our findings onto a different
tangent which is avoided. The models trained on COCO dataset are
preferred here since the classes in the set of COCO list are repre-
sentative of most common objects influencing major proportion of
behavioural patterns reflective of the visual information perceived.
Withing this set of COCO classes, we primarily focus on 24 classes
overly dominant in each spatial frame combined temporally which
primarily constitute the person class, 4 major vehicle classes, road
signs and symbols classes and a few other influencing gaze patterns.
We use a subjective method of ranking different Object detection
frameworks relative to our use-case by observing:

• The accuracy of detected objects in major classes.

• Consistency of the detected objects over temporal frames

• Performance of occluded regions of objects

• Percentage of false-negatives observed in random sample
frames and overall calculating the information retrieved
through the detected objects overall.

Additionally, we consider the quantitative results such as mAP for
the dataset (COCO) and speed(ms) in case two frameworks observe
identical performance. Even though in the short term we do not
intend on using a real-time Object detection framework for analysing
behavioral patterns, we still include SSD Mobilenet v1 and SSDlite
Mobilenet v2 COCO for understanding their relative performance on
this dataset for future studies which are real-time Object detection
models which can be deployed on an edge-device.

A. Subjective Evaluation of Frameworks
According to our subjective assertion in ??, we narrow our focus on
comparing the two most optimum frameworks i.e. YOLO v4 Darknet
and Faster R-CNN Inception v2 COCO by evaluating the subjective

comments in the table. Narrowing our focus down to two frameworks
after subjectively and objectively testing the others helps eliminate
any other ambiguity in our evaluation. Despite both the frameworks
being trained on the COCO dataset, the object detection method
both employ widely varies according to the application and in this
case, both frameworks tend to vary in their performance depending
on the tasks. Assigning each task a weightage according to relative
importance and then deciding the most optimum framework based
on our discretion 4.

A.1. YOLO V4 Darknet

YOLOv4 is a single stage detector framework with it’s core of target
detection algorithm in it’s efficient calculation and small size. The
model is capable of effectively localizing the objects in an image
which makes it efficient in various applications for object detection.
YOLO V4 skips the region proposal network in it’s algorithm and
tends towards making a trade-off for efficient and faster detection
by running over a dense sampling of all possible locations using a
one-stage object detection approach. In theory this might impact
the performance to some margin, however the magnitude of this
difference varies with different applications. YOLO’s efforts in min-
imizing the overlapping of detection boxes lies in using the global
image for detection, which encodes the global information reduc-
ing the detections of background as an object. In general, YOLO v4
Darknet outperforms most other networks in scenarios where the
object is distant in the focal view and has a clear consistent visible re-
gion temporally over the frames. Additionally, YOLO is known for its
consistency in detecting objects in temporal frames which preserve
spatial appearance.

• Backbone - CSPDarknet53 is a modified version of the Darknet-
53 network. The number of convolution layers in the network
are represented by the number ’53’ and CSP stands for Cross-
stage-partial connections.

• Neck: Path Aggression Network (PAN) and Spatial Pyramid Pool-
ing (SPP) form the components of the neck of the network. PAN
serves as the method of parameter aggregation for different
detector levels and SPP is used to increase the receptive field
by a significant amount which separates the most significant
context features without compromising the network operaton
speed.

• Head: YOLOv3 is used as the end of the chain object detector
for dense predictions and detections.

In general, various different versions of YOLO have shown high
computation speed and real-time inference, however since our ap-
plication focuses on accuracy over real-time detection, the real-time
factor isn’t taken into consideration while choosing frameworks. The
YOLO algorithm is designed to employ an image into a grid of multi-
ple cells and the confidence scores inside the region of the bounding
box are predicted for each cell and assigned a class probability. This
is done by using IOU metric (Intersection over Union), a common
method for evaluating semantic segmentation models, which mea-
sure the extent of overlap between detected object and the defined
ground truth as a fraction of the total area spanned by the union of
the two. Looking at a brief cycle of improvements in the YOLO algo-
rithm, YOLOv2 [7] consisted of anchor boxes- a pre-determined set
of boxes to predict the offsets from these pre-defined anchor boxes
rather than directly predicting the bounding box. However, YOLOv3
[8] included bounding box prediction over different scales and the
inclusion of 53 layers in Darknet. Currently, the most optimum of
all proposed, YOLOv4 [9] was superior in terms of both speed and
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Fig. 3. Comparison of 31/6500 frame from all networks to visually understand comments based on subjective comparison from ??

Framework Speed(ms) COCO mAP Comments

Faster R-CNN Inception v2 58 28
Efficient to Deploy, Accurate and low latency

on the given input video sequence.

SSDlite Mobilenet V2 COCO 27 22
Efficient and real-time however

not as accurate results
.

SSD Inception V2 COCO 42 24
Results comparable to Faster R-CNN Inception,

however few missed objects
in occluded scenes

SSD Mobilenet V1
COCO - quantized

30 21
Slightly depreciated performance as compared to

SSDlite Mobilenet V2, however lower latency.

Faster R-CNN Resnet50 COCO 89 30
Not efficient enough and multiple false-negatives

for other classes, prominent flickering
between frames.

Yolo V4 Darknet 73 47.5
Efficient, however produces few false

negatives and performs worse in occluded scenarios

Table 1. Initial Objective and Subjective comparison of all tested frameworks on the HMS Homonymous Hemanopia Dataset. As observed
in the next section, YOLOv4 Darknet and Faster R-CNN Inception v2 performs better than most other compared.

accuracy. As seen in ??, YOLOv4 provided 47.5% mAP over MS COCO
Dataset at a speed of 73ms per frame. In theory, YOLOv4 can be
summarised as follows:

It might be further worth noting the workflow of YOLO which is a
one-stage detector explained through 6:

• An image is split into a grid of N xN cells, where locally those
cells in which the object’s centre is located, are responsible for
the detection of the object. Associated with each cell is a loca-
tion of B bounding boxes, confidence score and the probability

of an object class dependent on the existence of an object in
the bounding box.

• A tuple of 4 values normalized between [0,1] con-
tain the coordinates of the bounding box namely

(center x-coordinate, center y-coordinate, width, height)

in the format (x, y , w ,h) where x and y are conditioned

depending on the cell location.

• Each cell is associated with its individual confidence score
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Fig. 4. A generalized network architecture for YOLO

which indicates the likelihood of the presence of object.

Pr (containing an object) x I oU (pred, truth) . Pr : Probability,
I oU : Intersection over Union.

• The probability of an object contained by a cell belonging to

every class Ci , i = 1. . .K is predicted by Pr (the object belongs

to the class Ci | containing an object). This allows the model

to predict only one set of class probabilities per cell regardless
of the number of bounding boxes, B .

• Cumulatively, an image contains N xN xB bounding boxes
where each box corresponds to 4 location predictions, 1 confi-
dence score, and K conditional probabilities for object classifi-
cation.

• Finally, the final layer of YOLO’s CNN Network outputs a

tensor of size N xN x(5B +K )

A.2. Faster R-CNN

R-CNN, coined by [10], is a Convolutional Neural Network (CNN)
with an added region-proposal algorithm which hypothesizes object
locations. This network employs a selective search to initially extract
a fixed number of regions (2000). Further, using a greedy algorith,
this network merges similar regions together to obtain the selected
regions where object detection is applied. Since R-CNN came with a
speed bottleneck, both in terms of training and testing, the authors
designed an enhanced algorithm entitled Fast R-CNN [11] using a
shared convolutional feature map that the convolutional neural net-
work would generated from the input image which is used to extract
the Regions of Interest (RoI). While Fast R-CNN was arguably better
in terms of both training and testing time, the improvement was not
dramatic because the region proposals were generated separately
by another model which tends to be expensive. However, Ren et
al. [12] proposed a Faster R-CNN algorithm which introduced the
Region Proposal Network (RPN) by integrating the region proposal
algorithm in the CNN model itself. Faster-RCNN introduces the
construction of an ensemble of a unified model composed of RPN
and Fast R-CNN with shared convolutional feature layers which is
trained end-to-end to predict both- the object bounding boxes and
objectness scores in a computationally inexpensive manner (10ms
per frame).

Workflow explaining the Faster R-CNN architecture in 8:

• The RPN (region proposal network) is fine-tuned end-to-end
for the region proposal task, further initialized by the pre-train
image classifier. The positive samples are assigned an IoU score
> 0.7 and negative samples an IoU score < 0.3 which might be
indirectly treated as a threshold.

• A spatial window cover of size n x n is slid over the convolu-
tional feature map of the frame.

• At the center of each sliding window, multiple regions of varying
scales and ratios are predicted simultaneously. An anchor

is a combination of (sliding window center, scale, ratio) .

For example, 3 scales + 3 ratios => k=9 anchors

at each sliding position.

• Finally, a ’Fast R-CNN’ object detection model is trained using
the proposals generated by the RPN.

• The Fast R-CNN network is used to then initialize RPN training.
The Shared Convolutional layers are kept and simultaneously,
the RPN-specific layers are fine-tuned. Now, the detection net-
work and RPN have shared convolutional layers which com-
pletes the workflow.

Loss function for Faster R-CNN network: The loss function of the
Faster R-CNN network can be described in the following manner-

The multi-task loss function combines the losses of classification
and bounding box regression:

L =Lcls +Lbox

L
({

pi
}

,
{

ti
})= 1

Ncls

∑
i

Lcls
(
pi , p∗

i

)+ λ

Nbox

∑
i

p∗
i ·Lsmooth

1
(
ti − t∗i

)
where Lcls is the log loss function over two classes, as we can easily
translate a multi-class classification into a binary classification by
predicting a sample being a target object versus not. Lsmooth

1 is the
smooth L1 loss.

Lcls
(
pi , p∗

i

)=−p∗
i log pi −

(
1−p∗

i

)
log

(
1−pi

)
The variables used to defined the loss function can be enlisted

in the form: |pi | Predicted probability of anchor i being an object.
|| p∗

i | Ground truth label (binary) of whether anchor i is an object.
||ti | Predicted four parameterized coordinates. ||t∗i | Ground truth
coordinates. | | Ncls | Normalization term, set to be mini-batch size
( 256) in the paper. | Nbox | Normalization term, set to the number
of anchor locations ( 2400) in the paper. || λ | A balancing parameter,
set to be ∼ 10 in the paper (so that both Lcls and Lbox terms are
roughly equally weighted).

B. Comparison of Both Frameworks through Standard Metrics
Since YOLOv4 performance widely varies as per context and the
dataset, we subjectively carried out our evaluation by localizing the
detected objects in each frame, penalizing the performance for each
undesired object detected or object missed out with separate cate-
gories for occlusion based missing or inconsistent frame tracking.
Table 1 proposes a direct comparison between YOLOv4 Darknet and
Faster R-CNN based on theoretical information on the architecture
of the given models.

Quantifying rate of False-positives and False-negatives in both
networks Amar et al. [13] conducted a comparative study between
the frameworks (Faster R-CNN Inception V2, Faster R-CNN Resnet
50, YOLO V3 and YOLO V4) and found that the difference is False
positives, negatives and precision is closely intertwined with
the dataset chosen for the study. While the above research was
conducted on two aerial datasets, the performance of both models
widely varied with the nature of the dataset- (Stanford Dataset and

Prince Sultan University (PSU) Dataset). The representation
of the images and nature of images widely influenced the perfor-
mance of the models. The Stanford dataset had nearly 30 times
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Fig. 5. Different stages of object detection explained through A.1 for a standard one-stage YOLO detection algorithm, further generalized to
YOLOv4 Darknet.

Fig. 6. Frame-wise comparison of Faster R-CNN network with YOLOv4 Darknet

as many object instances to be trained on than PSU dataset per
image. Following this, one of the conclusions made by the authors
were that the YOLO V4 was specifically tuned for the COCO dataset
and did not yield as high Average Precision values for the rest of the
datasets. It could also be subjectively observed that YOLO V4 had a
higher tendency of detecting fainter, distant objects which Faster
R-CNN could not easily catch, and while this hints at YOLO V4 being
a better algorithm for this niche of datasets, these results cannot be
smoothly extrapolated in our case. The reason is that Faster R-CNN
performs better than YOLO V4 for occluded images considering the
nature of the algorithm; and with most of the dataset consisting of
occlusions, the result changes drastically.

5. ALGORITHM

We used the Faster R-CNN Inception V2 Framework to carry out
the object detection for the Focal view of the gaze combined with
gaze estimation done discretely and later combined into a single
analysis algorithm to calculate the description of different objects

being gazed which breaks down into qualitative and quantitative
analysis. The results section is also further broken down into two
parts:

• Raw data analysis

• Visual description of quantitative results

The eye-tracking data split into yaw, pitch and roll per frame is
processed after factoring in the results from IMU sensors and the
cumulative data is quantified in the form of X and Y axis spatial
locations of eye-gaze vectors. These spatial locations for each
eye-gaze vector is associated with N other object entities detected in
the given frame corresponding to the gaze. For e.g. each frame may
have xa person objects or xb car objects, while the gaze vector might
only be focusing on one object or on none of them. Our approach
tries to calculate the most-probable results for the object being
gazed and encapsulates these results in the form of spatio-temporal
graphs which capture the spatial location for each object and the
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Fig. 7. Consistency analysis of both networks - YOLOv4 Darknet and Faster R-CNN Inception v2

Fig. 8. Network architecture for Faster-RCNN model

gaze moving through time.

The first step was to analyze the Euclidean Distance between the
eye-gaze vector and the centroid of the bounding box of detected
objects. This analysis pointed out the magnitude of difference be-
tween the Euclidean Distances between objects which were gazed
and objects not gazed.

There are three conditional stages employed to qualitatively as-
sess whether an object was gazed by the eye.

.1. point-in-polygon (PIP) algorithm to determine if the spatial coordi-
nate of eye-gaze lies within the bounding box.

The point-in-polygon (PIP) method is the most optimum method to
compute the relative position of eye-gaze coordinate when applied
to bounding-boxes as compared to the geofencing algorithm. What
simplifies even more here is that the structure of bounding box, in
the form of rectangles rather than polygons, simplifies the compu-
tational method to determine whether the point lies within the box,
thus decreasing computation time.

Algorithm 1. Point-in-Rectangle (PIR) Algorithm

1: procedure POINTINRECTANGLE(poi nt ,r ect ang le)
2: x, y ← poi nt
3: x1, y1, x2, y2 ← r ect ang le
4: if (x, y) ∈ {(x1, y1), (x1, y2), (x2, y1), (x2, y2)} then
5: return True
6: if x1 < x < x2 & y1 < y < y2 then
7: return True
8: return False

.2. Euclidean Perimeter Sum point-in-polygon (PIP) Algorithm to de-
termine if the spatial eye-gaze coordinate lies within the bounding
box for a cluster of points.

Despite its increased computational demands, this method has the
benefit of expediting the process of assigning a point to a bounding
box when the vertices are dispersed. The case-specific modification
of the algorithm is particularly beneficial in instances where bound-
ing boxes have not undergone pre-processing and are in an unre-
fined state. This approach was initially employed to compute a set of
eye-gaze coordinates for a smaller video frame dataset before tran-
sitioning to the first method. It is noteworthy that the case-specific
modification of this algorithm may be advantageous in comparable
situations where time can be conserved through the direct assign-
ment of a point to a bounding box without the necessity of consulting
data tables.

.3. Confirmatory Thresholding approach over a Euclidean algorithm to
verify poin-in-polygon (PIP) classifications

There are several circumstances in which point-in-polygon (PIP) and
Euclidean Perimeter Sum PIP algorithms fail to correctly identify eye-
gazes that are targeted at objects. One such scenario occurs when
attempting to detect oblong objects, such as pillars, road signs, and
utility poles, which are frequently the focus of human gaze but may
not be detected due to the shape of their bounding boxes. Bounding
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YOLOv4 Faster R-CNN

Phases
Concurrent bounding box

regression, and classification.
RPN + Fast R-CNN

object detector.

Neural network type Fully convolutional.
Fully convolutional

(RPN and 4 detection network).

Backbone feature extractor CSPDarknet53 (53 convolutional layers).
VGG-16 or Zeiler

Fergus(ZF).
Other feature extractors can also be incorporated.

Location detection Anchor-based Anchor-based

Number of anchor boxes
Using multiple anchors
for a single ground truth

3 scales and 3 aspect ratios,
yielding k = 9 anchors

at each sliding position.

Default Anchor sizes
(12,16), (19,36), (40,28),

(36,75), (76,55), (72,146),
(142,110), (192,243), (459,401)

Scales: (128,128),
(256,256), (512,512).

Aspect ratios: 1:1, 1:2, 2:1.

IoU thresholds One (at 0.213) Two (at 0.3 and 0.7).

Loss function Complete IoU loss: CIoU
Multi-task loss:

- Log loss for classification.
- Smooth L1 for regression.

Input size
Different possible input sizes
(n × n with n multiple of 32).

- Conserves the aspect ratio of the original image.
- Either the smallest dimension is 600,

or the largest dimension is 1024.

Batch size Default value: 64. Default value: 1

Algorithm Feature Extractor Input Size AP TP FN FP Precision Recall F1 Score FPS
Inference
Time (ms)

Faster R-CNN Inception v2 992 × 550 (variable) 0.739 548 190 11 0.980 0.743 0.845 9.5 105

Faster R-CNN Inception v2 608 × 608 (fixed) 0.731 541 197 14 0.975 0.733 0.837 9.5 105

YOLOv4 CSPDarknet-53 320 × 320 (fixed) 0.961 715 23 59 0.924 0.969 0.946 22.4 45

YOLOv4 CSPDarknet-53 416 × 416 (fixed) 0.965 720 18 66 0.916 0.976 0.945 19.4 52

YOLOv4 CSPDarknet-53 608 × 608 (fixed) 0.950 715 23 66 0.915 0.969 0.941 13 77

Table 2. Numerical score for different metrics associated with PSU Dataset.

Algorithm Feature Extractor Input Size AP TP FN FP Precision Recall F1 Score FPS
Inference
Time (ms)

Faster R-CNN Inception v2
600 × 816
(variable)

0.202 1780 6351 1813 0.495 0.219 0.304 19.2 52

Faster R-CNN Inception v2 608 × 608 (fixed) 0.317 2916 5215 2654 0.524 0.359 0.426 21.1 47

YOLOv4 CSPDarknet-53 320 × 320 (fixed) 0.157 1278 6853 5 0.996 0.157 0.272 21.1 47

YOLOv4 CSPDarknet-53 416 × 416 (fixed) 0.202 1646 6485 1 0.999 0.202 0.337 18.5 54

YOLOv4 CSPDarknet-53 608 × 608 (fixed) 0.209 1701 6430 64 0.964 0.209 0.344 12.5 80

Table 3. Numerical score for different metrics associated with Stanford Dataset

boxes that are not square in shape may have a lower probability of ac- curately detecting eye-gazes due to the configuration of their shape
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Algorithm 2. Euclidean Point-in-Polygon (PIP) Algorithm

1: procedure POINTINPOLYGON(p,P)
2: p = (x, y)
3: δ= 0
4: n = |P|
5: for i ← 1 to n do
6: Pi = (x1, y1, x2, y2) ▷ calculate the distance between the

point and the current side

7: δ← δ+
√

(x −x1)2 + (y − y1)2 +
√

(x −x2)2 + (y − y2)2

8: L = 0
9: for i ← 1 to n do

10: Pi = (x1, y1, x2, y2)

11: L ← L+
√

(x1 −x2)2 + (y1 − y2)2

12: if δ= L then
13: return True
14: return False

and the area they enclose. Additionally, the bounding boxes of tem-
porally moving objects may fluctuate significantly, causing eye-gazes
to be erroneously detected as being within the bounding box when
they are not. Moreover, in cases where the area encompassed by a
bounding box is significantly larger than the area occupied by the
object, the eye-gaze may lie within the void of the bounding box with
no intention of fixating on the object. These are just a few examples
of the limitations that restrict the autonomous implementation of
the first and second methods.

To address these issues, a confirmatory third approach has been
developed that employs thresholding by averaging sample Euclidean
distances between the eye-gaze coordinates and the centroid of the
bounding box for cases returned as "True" in the first two methods.
A second confirmatory threshold is applied to determine the diago-
nal distance between the radially opposite vertices of the bounding
boxes. This confirmatory threshold is used for objects that are ob-
long in size and it is difficult to determine whether an object is being
gazed at solely based on the Euclidean threshold from the centroid.
This test eliminates all objects for which the eye-gaze is greater than
the diagonal distance from the centroid to one of the vertices. This is
because oblong objects have extremely large diagonal distances from
the centroid to the vertices, and if the Euclidean distance surpasses
that distance, it is highly unlikely that the object would be gazed.

The algorithmic proof of the algorithm is given below:

Algorithm 3. Euclidean Distance Threshold Algorithm

1: procedure CHECKDISTANCE(e,B,µ)
2: e = (xe , ye )
3: B = (x1, y1, x2, y2)
4: cx ← x1+x2

2
5: cy ← y1+y2

2

6: d ←
√

(xe − cx )2 + (ye − cy )2

7: if d >µ then

8: δ←
√

(cx −x1)2 + (cy − y1)2

9: if d > δ then
10: return True
11: return False

Here, µ is the threshold calculated as the sum of Mean of data
points and the mean of the standard deviation of the data points
from the mean. Algebraically, given as:

µ=
∑n

i=1σi

n
+

∑n
i=1 xi

n

Where σi is the standard deviation of the i th set of data.

σi =
√∑n

i=1(xi −µx )2

n −1

Where xi is the i th element of the data set, µx is the mean of the
data set, and n is the total number of elements in the data set.

6. RESULTS AND DATA ANALYSIS

Based on the previous Algorithms to classify whether an object was
gazed or not, the results for the following research are tabulated
and then the data is sequentially visualized to identify the cognitive
patterns in patients with Homonymous Hemaniopia.

The dataset analyzed in this research comprises 32 minutes of
video input obtained from a patient diagnosed with Homonymous
Hemianopia, captured at 29 frames per second. The dataset yields a
total of 56.6K frames visualized and 431.6K objects detected across
the frames, providing a rich source of data for analysis.

A more granular examination was conducted on a subset of
frames, specifically frames 16581 to 18199, which were chosen as
they provide a representative sample of the patient’s eye-gaze pat-
terns while traversing a road, particularly at a pedestrian crossing.
This subset of frames presents an equal distribution of vehicles and
pedestrians, providing valuable insights into the patient’s gaze pat-
terns in complex interactions with the surroundings, specifically in
cases where multiple objects are in motion simultaneously, result-
ing in multiple points of attention, contextually within the patient’s
visual field. To better evaluate the 3D visualizations generated for
eye-gaze spatio-temporal features over time, we divide the Frames
from 16581 to 18199 into groups of three. The first one contain-
ing Frames 16581 to 17009 i.e 571 to 586 seconds, Frames 17009 to
17430 i.e 586 to 601s and Frames 17430 to 18199 i.e 601 to 627s of the
encoded video frame.

A. Visualizing Eye Gaze Distribution over Focal View
A.1. Kernel Density Estimation Plots

An important aspect of studying Homonymous Hemaniopia in pa-
tients is analyzing the distribution of Eye Gaze spatially. This is an
important visualization specifically for the selected subset of frames
during Street Crossing. We visualized this Spatio-Temporal data
points through a Kernel Distribution Estimation Plot which depicts
the probability density function of the non-parametric data points.
Fig. 9 represents the KDE plots for eye gaze detections over objects
utilizing the PIP algorithm while Fig. 10 represents the KDE plots for
eye gaze detections over objects through the Euclidean Thresholding
algorithm. The visualizations present more detail by distinguishing
between the heatmap for Objects which are gazed by Objects which
are not gazed. Clearly, the heatmap for objects which are not gazed is
larger than the heatmap for objects which aren’t and for the classes
which are more abundant throughout the frames, the heatmap is
centred at the centroid of field of view.

The table 5 quantifies the distribution between objects gazed
using the Point-in-Polygon algorithm 1 and the Euclidean Thresh-
olding Algorithm 3 and it was found that the objects gazed using the
Thresholding algorithm were greater than the PIP algorithm by a sig-
nificant amount. Multiple objects rapidly scanned by the human-eye
through peripheral vision are not completely calculated using the
PIP approach and this is further elaborated in Subsection 7. While
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Fig. 9. Point-in-Polygon (PIP) implementation of a Kernel Distribution Plot (KDE) of eye-gaze data visualized
during street-crossing between frames 16581 to 18199 (top) and entire dataset (bottom)

Fig. 10. Euclidean Thresholding Algorithm implementation of a Kernel Distribution Plot (KDE) of eye-gaze data
visualized during street-crossing between frames 16581 to 18199 (top) and entire dataset (bottom)
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Fig. 11. Comparing Euclidean distance between objects which are gazed and which aren’t through PIP
algorithm and Euclidean Thresholding algorithm

Point-in-Polygon
(PIP)

algorithm

Euclidean
Thresholding

Algorithm

Total
Detected
objects

n(car) 235 284 3060

n(person) 1127 2317 10924

n(traffic light) 0 0 59

n(motorcycle) 0 0 28

n(fire hydrant) 0 0 239

n(bus) 23 30 91

Table 4. Quanitfying increment in number of objects gazed
through the Euclidean Thresholding Algorithm over the street
crossing dataset

Saliency Detection is for further discussion, in a nutshell they iso-
late pixels within an image which correlate to the maximum neural
activation and are likely to be gazed first.

Compared to the PIP approach, there is an overall 52.43% increase
in detections through Euclidean Thresholding algorithm over street
crossing frames. Objects which were gazed through peripheral view
or through other possible limitations discussed in 5 through the
PIP algorithm is covered in the Euclidean approach. We further
investigate the deviation of the gaze in a Homonymous Hemaniopia
patient from more salient regions for a normal eye using ConvLSTM’s
in 7.

A.2. Temporal Gaze Graph representing rapid/abrupt or slow/steady
gaze moments over a period of Frames in the Field of view and the
tendency of gaze to shift towards higher density object clusters

After analyzing Kernel Density Estimation (KDE) plots, we visualized
Spatio-temporal 3D plots of movement of objects in the frames over
time. In the same plot, the variance of eye gaze was analyzed by ex-
tracting X and Y coordinates from Yaw, Pitch and Roll data combined
from head and eye movements.

A.3. Complexity of fixation determination through Hurst’s exponent.

To gauge the intricacy of time series for fixation duration, we employ
the MF-DFA approach. First introduced by Kantelhardt et al.[14],
??, this technique has been utilized in various time series such as
sunspot activity, traffic data [15], economic data [16], heart rate
measurements [17], brain electrical signals in humans , streamflow
records, and wind data.

Point-in-Polygon
(PIP)

algorithm

Euclidean
Thresholding

Algorithm

Total
Detected
objects

n(car) 4672 8018 70698

n(person) 17866 31216 118611

n(traffic light) 26 33 5091

n(motorcycle) 49 61 447

n(fire hydrant) 29 65 854

n(bus) 50 118 1258

Table 5. Quanitfying increment in number of objects gazed
through the Euclidean Thresholding Algorithm over the entire
dataset

Multifractal Detrended Fluctuation Analysis (MF-DFA) is a math-
ematical method used to analyze the scaling behavior of complex
signals, including eye gaze data. The method is used to identify the
presence of multiple fractal scaling exponents in the data, which can
indicate the presence of multiple patterns or structures in the data.

In the context of eye gaze tracking, MF-DFA can be used to an-
alyze the scaling behavior of eye movements and fixations, which
can provide information about the gaze stability, cognitive load, and
attention allocation during a visual task [18].

The procedure of MF-DFA is as follows. Consider the time series
x(i ) of length N , its cumulative series is defined as

Y (i ) =
i∑

k=1

(
xk −〈x〉) ; i = 1,2, · · ·N ,

The average of the time series over the entire data range is rep-
resented by 〈x〉. The values of Y (i ) can be considered as steps in a
random walk, where each step represents the fluctuation of the time
series around its average at a specific time. The next step involves
removing the local trends from the profile series Y . This is done by
dividing the Y (i ) series into segments of length dl and using a least-
square fit to fit a polynomial Yν to the data in each segment. The
variance of the data in each segment around the fitted polynomial is
expressed as:

F 2(dl ,ν) = 1

s

s∑
i=1

{Y [(ν−1)dl + i ]−Yν(i )}2 ;ν= 1,2, · · ·Ns



Research Article ETRA 13

Fig. 12. Frames for street crossing visualized with all objects in the field of view

Fig. 13. Frames for street crossing visualized with onl gazed objects in the field of view

Fig. 14. Frames 17430 to 18199 i.e 601s to 627s

Fig. 15. 3D visualization of spatio-temporal change in eye-gaze location in the x-y plane over frames.
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Fig. 16. Calculation of the Hurst’s exponent for the deviation of eye-gaze from the mean position for three
instances of dataset analyzed. Deviation is in the units of Euclidean Distance from the centroid of the Focal View.

The value of Ns is calculated by dividing the total number of data
points, N, by the size of each data segment, dl . In this study, linear
polynomials, specifically first order DFA or DFA1, are used for de-
trending the data. Once the detrending is complete, the multifractal
properties of the time series are analyzed. This involves defining the
q-th fluctuation moment for any non-zero real value of q .

Fq (dl ) =
(

1

Ns

Ns∑
ν=1

[
F 2(dl ,ν)

]q/2
)1/q

.

For q = 0,F0(dl ) can be written as

F0(dl ) = exp

(
1

2Ns

Ns∑
ν=1

ln
(
F 2(dl ,ν)

))
.

For large dl , the q-th fluctuation moment, Fq (dl ), follows a scal-

ing law that states that Fq (dl ) is proportional to sh(q), where h(q) is
known as the generalized Hurst exponent. A monofractal time series
has similar statistical fluctuations at different scales, making h(q) in-
dependent of q . When q = 2, h(2) is the standard Hurst exponent, H .
The standard Hurst exponent for uncorrelated time series is H = 1/2,
for anti-correlated it is H < 1/2, and for correlated it is H > 1/2. [19]

Algorithm 4. Calculating Hurst’s Exponent

1: Create the range of lag values: l ag s ← range(2,100)
2: Calculate the array of the variances of the lagged differences:

τ← [
√

(std(t s[l ag :]− t s[: −l ag ])) for l ag in l ag s]

3: Use a linear fit to estimate the Hurst Exponent:

ϕ← polyfit(log(l ag s), log(τ),1)

4: Return the Hurst exponent H from the polyfit output:

H ←ϕ[0] ·2

A Hurst exponent of 0.5 indicates random gaze tendency, while
values greater than 0.5 indicate positive persistence, meaning that
large deviations are followed by larger deviations and vice versa. On
the other hand, values less than 0.5 indicate negative persistence,
meaning that large deviations are followed by smaller deviations and
vice versa.

In our case, a calculated Hurst exponent of 0.3 to 0.45 indicates
that the fluctuations in the eye gaze deviations persist over time,

Fig. 17. Results using a Saliency Attentive ConvLSTM model on an
instance of street crossing

but not to a large extent. This suggests that the fluctuations in eye
gaze deviations are not random, but not as persistent as those with a
Hurst exponent close to 0.5 or higher.

7. SALIENCY DETECTION

The human visual system relies on the mechanism of visual attention
to effectively navigate the vast and intricate visual landscape of the
world. This is achieved by selectively focusing on the most salient or
pertinent elements within the scene. In the field of computer vision,
this process is replicated through the use of saliency detection,
which allows for the computational identification of regions within
an image that are likely to capture the attention of human observers.

Studies in the field of visual cognition have revealed that when
humans are looking at an image without a specific task in mind, their
gaze does not evenly cover every part of the picture. Instead, atten-
tion mechanisms direct their gaze towards parts of the image that are
important and noticeable [20]. A lot of research has been dedicated
to replicating this selective visual behavior through computational
saliency, which can be utilized in various applications such as
image retargeting [21], object recognition [22], video compres-
sion [23], tracking [24], and image captioning [25] which rely on data.

Perception of visual stimuli is not uniform across all creatures,
including humans and primates. Within the visual field, there is
a specific area called the fovea that has a much higher density
of receptors in the retina, allowing for clearer vision. To gain
more in-depth information about the visual world, it is necessary
to make eye movements to direct the fovea towards relevant or
intriguing objects. These movements often include fixations, where
the gaze remains still on a specific point, and rapid shifts called
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Fig. 18. An overview of the modified Saliency Attentive Model to incorporate order of spatial fixation locations is given. The input image
is processed through a Dilated Convolutional Network to compute a set of feature maps. An Attentive Convolutional LSTM enhances the
saliency features sequentially using an attentive recurrent mechanism. The predictions are combined with multiple learned priors to cap-
ture the tendency of humans to focus on the center of the image. During training, the network will be encouraged to minimize a combina-
tion of different loss functions to account for various quality aspects that the predictions should possess.

saccades, where the gaze moves from one fixation to another. While
studying visual patterns in patients with Homonymous Hemianopia,
identifying the deviation of gaze from the most salient objects in
the visual frame is crucial to understanding the receptive behavior
of such patients. This gains further importance in Street Crossing
instances where directing the fovea towards objects moving with
high velocity such as cars, trucks or rapidly moving pedestrians
becomes important when low level features from peripheral vision
aren’t enough to make split-second decisions while crossing the road.

A. Model Architecture

In this research, we utilize an Attentive Convolutional Long Short-
Term Memory network (Attentive ConvLSTM) that iteratively focuses
on relevant spatial locations to refine saliency features to quantify
the most salient regions within the Field of View of the patient. Here,
we develop upon the existent Saliency Attentive Model (SAM) by
Cornia et al. [26] by introducing another algorithm to analyze for
the priority of the Spatial Fixation Layers within the Saliency Map
through by weighing each point of saliency using a threshold.

This method uses the ResNet model [27] to get features from the
image. This is achieved through a deep spatial contextual LSTM to
look at the image horizontally and vertically and combine global
and local information to determine the important parts of the image.
A significant body of research has explored the concept of illumi-
nating neural model activations through backpropagation-based
techniques [28]. It is crucial to recognize that this area of inquiry
differs fundamentally from the field of saliency prediction as its ob-
jective is not to imitate human gaze patterns.

The key innovation of the Saliency Attention Model [26] is the
utilization of an Attentive Convolutional model, which processes
saliency features recurrently by focusing on different regions of a
tensor. This represents a novel use of LSTM, which usually relies on
the notion of time. The predictions are then combined with multiple
learned priors that model the human gaze center bias. The authors
employ a Convolutional Neural Network to extract feature maps from
input images and use a Dilated Convolutional Network instead of

a pre-defined CNN to alleviate the rescaling effects that can impair
saliency prediction performance. The network is trained using a
combination of loss functions that take into account multiple quality
aspects simultaneously.

A.1. Attentive ConvLSTM model

Long Short-Term Memory networks [29] have demonstrated good
performance on several tasks that involve time dependencies [30],
[31], [32]. However, they cannot be directly used for saliency pre-
diction, as they operate on sequences of time-varying vectors.To
overcome this, traditional LSTM models can be extended to work
on spatial features by substituting dot products with convolutional
operations in the LSTM equations. Additionally, they exploit the
sequential nature of LSTM to process features iteratively, rather than
using the model to handle temporal dependencies in the input.

The LSTM network takes in a stack of features derived from an
input image X , then produces a more refined set of feature maps X

′

that are fed into a learned prior module. It operates by sequentially
updating an internal state through three sigmoid gates, using specific
equations.

It =σ
(
Wi ∗ X̃t +Ui ∗Ht−1 +bi

)
Ft =σ

(
W f ∗ X̃t +U f ∗Ht−1 +b f

)
Ot =σ

(
Wo ∗ X̃t +Uo ∗Ht−1 +bo

)
Gt = tanh

(
Wc ∗ X̃t +Uc ∗Ht−1 +bc

)
Ct = Ft ⊙Ct−1 + It ⊙Gt

Ht =Ot ⊙ tanh(Ct ) .

The gates, It , Ft , and Ot , the candidate memory, Gt , the mem-
ory cell, Ct and Ct−1, and the hidden state, Ht and Ht−1, are all
3-dimensional tensors with 512 channels each. The convolutional
operator, represented by *, and all the parameters W , U , and b are
2-dimensional convolutional kernels and learned biases. The LSTM
layer’s input, X̃ t , is calculated at each timestep through an attentive
mechanism, which involves generating an attention map by convolv-
ing the previous hidden state, H t −1, and the input, X , passing it
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Fig. 19. Examples of Saliency maps predicted on the SERI Homonymous Hemaniopia Dataset using a modified
Attentive ConvLSTM with learned priors

through a tanh activation function, and then convolving it with a
one-channel convolutional kernel.

Zt =Va ∗ tanh(Wa ∗X +Ua ∗Ht−1 +ba ) .

The output of this operations is a 2-d map from which we can com-
pute a normalized spatial attention map through the softmax opera-
tor:

A
i j
t = p

(
at ti j | X , Ht−1

)
=

exp
(

Z
i j
t

)
∑

i
∑

j exp
(

Z
i j
t

)
where A

i j
t is the element of the attention map in position (i , j ). The

attention map is applied to the input X with an elementwise product
between each channel of the feature maps and the attention map:

X̃t = At ⊙X .

Psychological studies have revealed that observers’ gazes tend
to be biased toward the center of images. This is mainly due to the
tendency of photographers to place objects of interest at the center,
as well as the expectation of finding the most informative content
around the center as a result of repeated viewing of such images.
Another factor contributing to this behavior is the interestingness of
the scene. In the absence of highly salient regions, humans tend to
look at the center of the image.

Based on this research, the inclusion of center priors is a crucial
element in several recent works on saliency prediction [33], [34], [35].
Saliency Attentive Model allows the network to learn its own pri-
ors. To reduce the number of parameters and simplify the learning
process, the priors are constrained to be 2-dimensional Gaussian
functions, with the mean and covariance matrix being freely learn-
able. This approach enables the network to learn its own priors solely
from data, without relying on assumptions from biological studies.

The center bias can be modelled by means of a set of Gaussian
functions with diagonal covariance matrix. This is learned according
to the following equation:

f (x, y) = 1

2πσxσy
exp

(
−

( (
x −µx

)2

2σ2
x

+
(
y −µy

)2

2σ2
y

))
.

The Saliency Attentive Model learns the parameters of 16 Gaus-
sian functions through the course of its experiments and generates
the relevant prior maps by combining the learned maps with a tensor
that possesses 512 channels, resulting in a tensor with 528 channels.
This tensor is then processed through a convolutional layer that fea-
tures 512 filters, adding non-linearity to the model and proving to

be more effective than previous works as demonstrated in section
V-C. The entire prior learning component is repeated twice within
the Saliency Attentive Model.

A.2. Loss Function

In order to account for various quality factors, saliency predictions
are usually measured using different metrics. Based on this evalu-
ation process, the Saliency Attentive Model introduces a new loss
function that is a linear combination of three separate saliency eval-
uation metrics. The overall loss function is defined as follows:

L
(
ỹ,yden ,y f i x

)
=

αL1

(
ỹ,y f i x

)
+βL2

(
ỹ,yden

)
+γL3

(
ỹ,yden

)
The loss function of the Saliency Attentive Model is a linear com-

bination of three different evaluation metrics for saliency predic-
tion: Normalized Scanpath Saliency (NSS), Linear Correlation Coeffi-
cient (CC), and Kullback-Leibler Divergence (KL-Div). These metrics
are commonly used to assess the performance of saliency predic-
tion models. The predicted saliency map, ỹ, is compared to the
groundtruth density distribution, yden, and the groundtruth binary
fixation map, y f i x , to calculate the three loss functions, with scalars
α, β, and γ adjusting the balance between them. The NSS metric
was specifically designed for the evaluation of saliency models and
calculates the saliency map values at the eye fixation locations, nor-
malized by the saliency map variance.

L1

(
ỹ,y f i x

)
= 1

N

∑
i

yi −µ(y)

σ(y)
·y

f i x
i

where i indexes the i th pixel, N = ∑
i y

f i x
i is the total number of

fixated pixels and y is normalized to have a zero mean and unit
standard deviation.

The Linear Correlation coefficient or the Pearson’s correlation
coefficient treats the saliency and groundtruth density maps, y and
yden , as random variables measuring the linear relationship between
them. The following equation explains the computation process:

L2

(
ỹ,yden

)
=

σ
(
ỹ,yden

)
σ(y) ·σ(

yden
)

where σ
(
ỹ,yden

)
is the covariance of ỹ and yden .

The Kullback-Leibler Divergence (KL-Div) measures the amount
of information lost when approximating the groundtruth density dis-
tribution with the predicted saliency distribution. This metric takes a
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Fig. 20. Extraction of local maxima in Saliency Maps using 0-th dimensional persistent homology for 2D images

probabilistic approach to interpreting the saliency and groundtruth
density maps. The KL-Div is formulated as follows:

L3

(
ỹ,yden

)
=∑

i
yden

i log

(
yden

i

ỹi +ϵ
+ϵ

)

The Kullback-Leibler Divergence (KL-Div) measures the differ-
ence between the predicted saliency map distribution (y) and the
groundtruth density map distribution (yden ) by comparing their in-
formation content. The regularization constant (ϵ) is used to prevent
the KL-Div from becoming infinity when comparing two unequal
distributions. A lower value of KL-Div implies that the predicted
saliency map better approximates the groundtruth.

A.3. Using Persistent Homology to predict order of Spatial fixation
locations in Saliency Maps

To calculate the priority order of Spatial fixation locations inferred
from Saliency Maps, we use a method called Persistent Homology
which is used in the field of Topological Data Analysis (TDA) to
identify the order in which priority descends within peaks of a 3D
projection of Saliency Maps. [36]

Persistent homology provides us with a mathematical framework
for capturing and quantifying the significance of topological features,
such as peaks of the transposed Saliency Map to 3D, in unprocessed
data. This is achieved by considering the super-level sets of a func-
tion f , represented as Uc = f −1([c,1]) = x ∈ [0,1]2 : f (x) ≥ c, where
c ∈ R starts at ∞ and decreases towards −∞. As c decreases, the
topology of Uc changes, creating and merging connected compo-
nents, emerging and filling holes, and so on. Persistent homology
tracks the evolution of these topological features in arbitrary dimen-
sions and provides information on their longevity. A feature is con-
sidered "more significant" if it lasts longer.

Fig. 21. Kernel Density Estimation
plot for Spatial Fixation Locations in

a Saliency Map
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Fig. 22. (Blue) Weighted Euclidean Distance of the Salient Features from Eye Gaze Spatial Coordinates. (Orange)
Unweighted Euclidean Distance of all Salient Points from Eye Gaze Spatial Coordinates for Street Crossing

Instance

Fig. 23. Correlation of Weighted Distance with Euclidean Distance to understand if the objects gazed in closest
proximity by Homonymous Hemaniopic patients are the most Salient or not.

Code for calculating spatial fixation locations using persistent
homology

def get_persistent_homology(seq):
peaks = []
# Maps indices to peaks
idxtopeak = [None for s in seq]
# Sequence indices sorted by values
indices = range(len(seq))
indices = sorted(indices, key = lambda i:
seq[i], reverse=True)

# Process each sample in descending order
for idx in indices:

lftdone = (idx > 0 and
idxtopeak[idx-1] is not None)
rgtdone = (idx < len(seq)-1 and
idxtopeak[idx+1] is not None)
il = idxtopeak[idx-1] if lftdone else None
ir = idxtopeak[idx+1] if rgtdone else None

# New peak born
if not lftdone and not rgtdone:

peaks.append(Peak(idx))
idxtopeak[idx] = len(peaks)-1

A.4. Analyzing distribution and correlation of Saliency Maps

Through the processed Saliency Maps for Street Crossing 1 instance,
we analyze the correlation of the Weighted distance between the Eye
Gaze and most salient features on the focal view. It is important to
note here that temporal contextual information is important while
analyzing temporal movement behavior but since this is a complex
task, we haven’t taken into account temporal context during analysis.
For given N frames within a temporal slice S, the prority of gaze for
the most salient features changes once the feature has been gazed. If
the temporal slice S of an event is small such that limN→d N N , the
change in Eye Gaze priority over a frame is the same as the order
of Spatial Fixation points in a Saliency Map visualized in 20 for an
average of pixels across the frames in the temporal slice S.

Here, we quantify the correlation without considering temporal
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saliency of frames. We use the Kernel Density Approach,

f̂ (x) = 1

nh

n∑
i=1

K
( x −xi

h

)
using smoothing to analyze the distribution of most Salient Points for
Street Crossing Instance. It can be in Fig. 21 observed that the most
salient features when concatenated across all time slices, are shifted
towards the left of the KDE plot and mainly oriented towards the
centroid of the Field of View. Fig. 23 demonstrates the distribution
of Weighted Euclidean Distance and Euclidean Distance. We use a
modified Mahalanobis Distance to calculate this:

d(A,B) =
√√√√∑

i

(Ai −Bi )2

wi
,

where Ai is the i -th feature for A and wi is the weight of the pixel
i or the inverse variance of the feature i . The utilization of wi in
the denominator is aimed at assigning the lowest Weighted Distance
to the point that showcases the greatest saliency and is closest to
the Eye Gaze coordinates, and the highest value to the point that is
furthest away and displays minimal saliency. Fig. 22 quantifies the
correlation between The Weighted Euclidean Distance and the Eu-
clidean Distance and a moderate positive correlation is an indicator
that the Eye Gaze proximity was higher at more salient regions than
regions with lower saliency.
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“Multifractal detrended fluctuation analysis (mf-dfa) of stock market
indexes. empirical evidence from seven central and eastern european
markets,” Sustainability 12 (2020).

17. D. Makowiec, A. Dudkowska, R. Galaska, A. Rynkiewicz, and
J. Wdowczyk, “Monofractality in rr heart rate by multifractal tools,” Acta
Phys. Polonica B - ACTA PHYS POL B 40 (2009).

18. M. Sharifi, H. Farahani, F. Shahbazi, M. Sharifi, C. Kello, and M. Zare,
“Complexity of eye fixation duration time series in reading of persian
texts: A multifractal detrended fluctuation analysis,” (2017).

19. R. Nigmatullin, S. Dorokhin, and A. Ivchenko, “Generalized hurst hy-
pothesis: Description of time-series in communication systems,” Math-
ematics 9 (2021).

20. R. Rensink, “The dynamic representation of scenes,” Vis. Cogn. 7,
17–42 (2000).

21. V. Setlur, S. Takagi, R. Raskar, M. Gleicher, and B. Gooch, “Automatic
image retargeting,” in Proceedings of the 4th International Conference
on Mobile and Ubiquitous Multimedia, (Association for Computing
Machinery, New York, NY, USA, 2005), MUM ’05, p. 59–68.

22. D. Walther, L. Itti, M. Riesenhuber, T. Poggio, and C. Koch, “Atten-
tional selection for object recognition — a gentle way,” in Biologically
Motivated Computer Vision, H. H. Bülthoff, C. Wallraven, S.-W. Lee,
and T. A. Poggio, eds. (Springer Berlin Heidelberg, Berlin, Heidelberg,
2002), pp. 472–479.
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